
Hardware Security Projects (CPU & DRAM Attack Surfaces) 

Completed 5 hands-on assignments targeting architectural vulnerabilities in 

CPUs and DRAM. Exploits are based on real-world techniques like speculative 

execution attacks and Rowhammer primitives, tested on physical hardware with 
no simulation. 

 

Cache Side-Channel Attacks 

Implemented high-resolution Flush+Reload and Evict+Reload side-channel 
primitives to extract cryptographic keys from vulnerable T-table-based 

encryption. Reverse-engineered cache set mappings, crafted eviction sets 

under non-LRU replacement policies, and optimized timing measurements using 

rdtsc, cpuid, and memory barriers. Overcame obstacles such as hardware 

prefetching and speculative execution noise, demonstrating strong skills in 

cache microarchitecture, low-level timing analysis, and side-channel 
exploitation. 

 

 

1 Function attacked vulnerable to leaking the key 

  

 

MMU-Based Side-Channel Attacks (AnC: ASLR⊕Cache Address Recovery) 

Demonstrated how memory translation mechanisms can leak address 

randomization (ASLR) by exploiting timing side channels in CPU cache behavior 

during MMU page table walks. Built a 

complete Evict+Time attack chain, 

developing precise TLB eviction and 
cache eviction primitives without 

relying on huge pages. Engineered 

eviction of PML1–PML4 page table 

entries, captured cache slowdown 

heatmaps across translation levels, and 
reconstructed full virtual addresses by 

identifying fine-grained PTE offsets 

inside cache lines. Addressed real-

world challenges such as adaptive cache 

replacement policies, partial page table walk optimizations, and translation 

cache effects. Gained advanced expertise in MMU internals, virtual memory 

2 Eviction Buffer used to dicover Cacheline 



management, microarchitectural side channels, cache eviction engineering, 

and low-noise timing-based address recovery. 

 

 

 

Transient Execution Attacks (Meltdown, Spectre v1, and Retbleed) 

Explored how speculative and transient execution mechanisms can violate 

memory isolation by observing microarchitectural side effects on the CPU 

cache. Implemented a full suite of attacks: a Meltdown exploit leaking 

privileged memory via transient accesses using SEGV suppression, Intel TSX 
transactions, and Spectre v1 mispredictions; and a Retbleed exploit crafting 

precise Branch Target Buffer (BTB) collisions to mislead speculative returns 

into attacker-controlled gadgets. Built custom Flush+Reload channels for 

secret extraction, handled transient faults with fine-grained signal 

management, engineered BTB collisions under recursive stack overflow 

conditions, and optimized speculative window timing. Gained strong expertise 

in out-of-order execution internals, branch prediction attacks, transient 
fault mitigation bypasses, and microarchitectural side-channel exploitation. 

 

3 Conceptual Drawing of the attack 

 

DRAM Reverse Engineering and Rowhammer Fuzzing (DRAMA/Blacksmith) 

Showcased how weaknesses in modern DRAM chips can be exploited to induce bit 

flips by carefully engineering memory access patterns. Reverse-engineered 

the secret DRAM addressing functions (bank and row mapping) using timing 

side-channels based on bank conflict detection, crafted collision sets, 

extracted bank function XOR masks, and derived precise row selection masks. 

Developed a custom Rowhammer fuzzer inspired by Blacksmith, synchronized 

with DRAM refresh intervals (ACTtREFI), and bypassed TRR (Target Row Refresh) 

mitigations. Engineered complex, non-uniform hammering patterns in the 

frequency domain, validated fuzzer performance across different DRAM 

modules, and detected real-world Rowhammer-induced bit flips. Gained deep 

expertise in DRAM internals, memory controller behavior, side-channel-based 
physical address analysis, and hardware fault exploitation. 



 

4 Reverse engineering the bank function 

 

System Rowhammer Exploit (Page Table Attack -> Privilege Escalation) 

Demonstrated how single bit flips induced by Rowhammer can be escalated into 

full kernel compromise by corrupting Linux page table structures. Allocated 

physically contiguous memory using buddy allocator manipulation and bank 

conflict side-channels, detected repeatable bit flips aligned to PTE fields, 

and massaged the memory allocator (PCP lists and migratetypes) to recycle 

vulnerable pages into page tables. Crafted self-referencing page table 

entries to build a read/write primitive over arbitrary physical memory. 

Scanned physical memory for struct cred objects to escalate privileges, 

achieving full root access without crashing the system. Mastered DRAM fault 

exploitation, low-level Linux memory management, Rowhammer-induced fault 
modeling, and advanced memory massaging and allocator steering. 

 

 

5 Crafting a self referencing page 



Assignment IV 

Triggering  Rowhammer  Bitflips

Stuart and Xavier



Find the right Threshold for row conflict



Reversing the DRAM addressing function

Physical Address

 1. Determine the bits involved in bank selection



 Determine the bits involved in bank selection

Create first conflict set with random pick

No conflict row with any other set on 
another random pick-> We found a new set:

If we do this protocol enough time
we get all the sets and thus the number of 
bank



 Determine the bits involved in bank selection

Create first conflict set with random pick

No conflict row with any other set on 
another random pick-> We found a new set:

If we do this protocol enough time
we get all the sets and thus the number of 
bank



Reversing the DRAM addressing function

Physical Address

 1. Determine the bits involved in bank selection
 2. How these bits are combined to form bank selection functions 



Reversing the DRAM addressing function

Physical Address

 1. Determine the bits involved in bank selection
 2. How these bits are combined to form bank selection functions 



Reversing the DRAM addressing function

Physical Address

 1. Determine the bits involved in bank selection
 2. How these bits are combined to form bank selection functions 

Generate every possible pair

Check that the xor function give the same result for 
each elem



Reversing the DRAM addressing function

Physical Address

1. Identifying row selection bits (contiguous)



Reversing the DRAM addressing function

Physical Address

1. Identifying row selection bits (contiguous)

We flip each bit of the 
address while keeping 
in same bank

If there is 
a row 
conflict, 
we know 
it is row 
selection 
bit



Fuzzing Rowhammer Patterns



Challenges
Week1 : DRAMA

-  Obtain a stable threshold
-  Obtain a stable number of sets (duplicate sets)

Week2 :  Fuzzing Rowhammer Patterns

- Our hammer function was not functional and we took time to see that it was not 
working.



hostname,        threshold,  #banks, bank_mask,    bank_functions,                            row_mask

ee-tik-cn001, 530,       16,     0xfe040,      0x2040 0x24000 0x48000 0x90000,            0x3ffe0000

ee-tik-cn002, 534,       16,     0xfe040,      0x2040 0x24000 0x48000 0x90000,            0x3ffe0000

ee-tik-cn003, 524,       32,     0x3fe040,     0x2040 0x44000 0x88000 0x110000 0x220000,  0x3ffc0000

hostname,        #patterns,  #effective,  #bitflips
ee-tik-cn022,    2600,       455,         1595
ee-tik-cn020,    2978,       220,         1057
ee-tik-cn013,    2829,       64,          79
ee-tik-cn008,    2755,       648,         7035

hostname,      #displacements,  #bitflips,  bank_idx  
ee-tik-cn022,  4096,            38389,      9
ee-tik-cn020,  4096,            125065,     7 
ee-tik-cn013,  4096,            2954,       15
ee-tik-cn008,  4096,           57372,      7,

Results



Assignment V 

Rowhammer on x86 PTE

Stuart and Xavier



1. Find continuous memory

2. Find a pattern generating a reliable exploitable bitflip

3. Backup a file descriptor with a known physical page

4. Spray the page tables mapping to this FD

5. For each mapping find which one is the corrupted one

6. Craft the PTEs such to have access to wanted physical address

7. Patch discrepancies before unmapping a virtual memory area or terminating a process.

8. Change uid credentials to gain ability to pop a shell with root permission

Summary of the attack



Find continuous memory 
● Mostly work on all nodes
● Only 512KB (single rank) and 2MB (dual rank) continuous blocks
● Works because we are testing all the 4KB pages of the continuous range



Find exploitable bitflip
● Struggle to adapt blacksmith to this assignment
● Happy that our blacksmith find in few second a exploitable bitflip on some 

nodes



Backup a file descriptor with a known 
physical page

Write something in the newly created file descriptor such that when we search for the 
corrupted PTE the only mapping not pointing to this value is the corrupted one.

FD “HARDSECS”

Physical Page:



FIND THE RIGHT ADDRESS

“HARDSECS”
PTE



FIND THE RIGHT ADDRESS

“HARDSECS”
PTE

PTE



FIND THE RIGHT ADDRESS

“HARDSECS”
PTE

PTE

PTE



FIND THE RIGHT ADDRESS

“HARDSECS”
PTE

PTE

PTE

PTE

EUREKA!



Spray the page tables mapping to this FD

ROW 8 BYTES

512 …

… …

128 0x123456789

… …

0 …

Bitfip at 
0x100400

Page 0x100000

“HARDSEC”

PTE

Need to put the right offset

128



How to become root

Find our process

johndoe:x:1000:1000:John Doe,,,,:/home/hdsecs:/dram_attack

Set uid to root such that able to invoke shell 
with root privilege



Meltdown & Spectre
by Stuart and Xavier



Meltdown Segv - PF Handler
1. Use sigaction to set a 

segfault handler

2. Set the flag to 
SA_NODEFER to reuse the 
handler

3. Set the jump point inside 
the condition of the if to 
return in case of PF



Meltdown Segv - Before the attack
1. Create a valid malloc

2. Load the secret inside the 
memory to speed up the 
secret access later

3. Flush the probe array and 
the valid variable



Meltdown Segv - The attack
1. Access the valid variable to win time before the page fault

2. Load the secret

3. Access the probe array using the secret



Meltdown TSX

Same as for Meltdown Segv with TSX instead of the PF Handler



Meltdown Segv/TSX - Difficulties

1. Finding SA_NODEFER to reuse the handler multiple times

2. Understanding that we can load kernel memory inside the memory with 
Read() without having a PF to speed up the access to the secret

3. Understanding that we need to add a long instruction before accessing the 
secret to increase the delay before the PF



Meltdown Spectre - Setup

https://spectreattack.com/spectre.pdf



Meltdown Spectre - Training

1. Load the secret in memory

2. Compute malicious X

3. Train the victim function

4. Flush the array of the 
victim function

5. Flush the variable of the if 
condition of the victim 
function



Meltdown Spectre - After the attack

1. Reload the array

2. MAGIC FOR LOOP

https://fr.pinterest.com/pin/eureka--517210338442945815/



Meltdown - Results



RetBleed


	Hardsec
	Assignment IV   Triggering  Rowhammer  Bitflips
	Assignment V
	Meltdown & Spectre



